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leakage function adaptively and
adversarially chosen.
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◮ Will use definition of leakage-resilient
stream-cipher from [Dziembowski,P
FOCS’08] (there we use PRG & extractor,
now just a PRF)

◮ SF outputs M1, M2, . . . (Mi ∈ {0, 1}n).
◮ Before Mi is output, adversary chooses

leakage function f and gets output of f
applied to the state of SF (not quite).

◮ Bounded Leakage: Range of f is bounded to
λ bits.

◮ Only computation leaks information: f gets
as input only the part of the state that is
actually accessed to compute Mi .
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◮ Round i : attacker ] chooses fi−1 and gets leakage
fi−1(Ki−1) and output Mi .

◮ Security: Mℓ is pseudorandom given M1, . . . , Mℓ−1

and f0(K0), . . . , fℓ−1(Kℓ−1).



Tools

◮ (from [DP’08]) For any PRG G : {0, 1}m → {0, 1}n

and any function f : {0, 1}m → {0, 1}λ: G(S) has high
HILL pseudoentropy even given f (S).

◮ (new) Any weak PRF is seed compressible.


