
how to do it right...
A Leakage-Resilient Mode of Operation for

Block-Ciphers

Krzysztof Pietrzak (CWI Amsterdam)

crypto’08 rump session



◮ How to use a block-cipher F to get a
stream-cipher SF which is secure against
side-channel attacks???



◮ How to use a block-cipher F to get a
stream-cipher SF which is secure against
side-channel attacks???

◮ Not like in Keeloq.



◮ How to use a block-cipher F to get a
stream-cipher SF which is secure against
side-channel attacks???

◮ Not like in Keeloq.
◮ Want security against all side-channels:

leakage function adaptively and
adversarially chosen.



◮ Will use definition of leakage-resilient
stream-cipher from [Dziembowski,P
FOCS’08] (there we use PRG & extractor,
now just a PRF)



◮ Will use definition of leakage-resilient
stream-cipher from [Dziembowski,P
FOCS’08] (there we use PRG & extractor,
now just a PRF)

◮ SF outputs M1, M2, . . . (Mi ∈ {0, 1}n).



◮ Will use definition of leakage-resilient
stream-cipher from [Dziembowski,P
FOCS’08] (there we use PRG & extractor,
now just a PRF)

◮ SF outputs M1, M2, . . . (Mi ∈ {0, 1}n).
◮ Before Mi is output, adversary chooses

leakage function f and gets output of f
applied to the state of SF (not quite).



◮ Will use definition of leakage-resilient
stream-cipher from [Dziembowski,P
FOCS’08] (there we use PRG & extractor,
now just a PRF)

◮ SF outputs M1, M2, . . . (Mi ∈ {0, 1}n).
◮ Before Mi is output, adversary chooses

leakage function f and gets output of f
applied to the state of SF (not quite).

◮ Bounded Leakage: Range of f is bounded to
λ bits.



◮ Will use definition of leakage-resilient
stream-cipher from [Dziembowski,P
FOCS’08] (there we use PRG & extractor,
now just a PRF)

◮ SF outputs M1, M2, . . . (Mi ∈ {0, 1}n).
◮ Before Mi is output, adversary chooses

leakage function f and gets output of f
applied to the state of SF (not quite).

◮ Bounded Leakage: Range of f is bounded to
λ bits.

◮ Only computation leaks information: f gets
as input only the part of the state that is
actually accessed to compute Mi .



Leakage Resilient Stream cipher.
◮ PRF F : {0, 1}κ × {0, 1}n → {0, 1}κ+n

e.g. F(K , X ) = AES(K , 0‖X )‖AES(K , 1‖X )
◮ Secret key is K0, K1, M0, output is M0, M1, . . .

◮ i ’th round: (Ki+2, Mi+1) = F(Ki , Mi).

K0 F F

M0 K1 F F

M1 M2 M3 M4

K2

K3

K4



Leakage Resilient Stream cipher.
◮ PRF F : {0, 1}κ × {0, 1}n → {0, 1}κ+n

e.g. F(K , X ) = AES(K , 0‖X )‖AES(K , 1‖X )
◮ Secret key is K0, K1, M0, output is M0, M1, . . .

◮ i ’th round: (Ki+2, Mi+1) = F(Ki , Mi).

K0 F F

M0 K1 F F

M1 M2 M3 M4

K2

K3

K4



Leakage Resilient Stream cipher.
◮ PRF F : {0, 1}κ × {0, 1}n → {0, 1}κ+n

e.g. F(K , X ) = AES(K , 0‖X )‖AES(K , 1‖X )
◮ Secret key is K0, K1, M0, output is M0, M1, . . .

◮ i ’th round: (Ki+2, Mi+1) = F(Ki , Mi).

K0 F F

M0 K1 F F

eval eval eval eval

] ] ] ] ]

M1 M2 M3 M4

K2

K3

K4

M0

M1

M2

M3

f0 f0(K0) f1 f1(K1) f2 f2(K2) f3 f3(K3)

◮ Round i : attacker ] chooses fi−1 and gets leakage
fi−1(Ki−1) and output Mi .



Leakage Resilient Stream cipher.
◮ PRF F : {0, 1}κ × {0, 1}n → {0, 1}κ+n

e.g. F(K , X ) = AES(K , 0‖X )‖AES(K , 1‖X )
◮ Secret key is K0, K1, M0, output is M0, M1, . . .

◮ i ’th round: (Ki+2, Mi+1) = F(Ki , Mi).

K0 F F

M0 K1 F F

eval eval eval eval

] ] ] ] ]

M1 M2 M3 M4

K2

K3

K4

M0

M1

M2

M3

f0 f0(K0) f1 f1(K1) f2 f2(K2) f3 f3(K3)

◮ Round i : attacker ] chooses fi−1 and gets leakage
fi−1(Ki−1) and output Mi .

◮ Security: Mℓ is pseudorandom given M1, . . . , Mℓ−1

and f0(K0), . . . , fℓ−1(Kℓ−1).



Tools

◮ (from [DP’08]) For any PRG G : {0, 1}m → {0, 1}n

and any function f : {0, 1}m → {0, 1}λ: G(S) has high
HILL pseudoentropy even given f (S).

◮ (new) Any weak PRF is seed compressible.


