

Preimage Attacks on MD, HAVAL, SHA, and Others

MD4 HAVAL-3 SHA-0 HAS-160 MD5 HAVAL-4 SHA-1 RIPEMD HAVAL-5 SHA-2

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories

- Collision resistance
 - has been broken in many hash functions by Prof. Wang's great work.

- Preimage resistance
 - is more important.
 - is not analyzed well yet.

- Collision sistance
 - has been broken in many hash functions by Prof. Wang's great work.

- Preimage resistance
 - is more important.
 - is not analyzed well yet.

Collision sistance

Chinese Trick

 has been broken in many hash functions by Prof. Wang's great work.

- Preimage resistance
 - is more important.
 - is not analyzed well yet.

- Collision sistance

Chinese Trick

 has been broken in many hash functions by Prof. Wang's great work.

- Preimage resistance
 - is more important.
 - is not analyzed well yet.

MD4 (48-step, 128-bit)

Previous

New (SAC08)

MD4 (48-step, 128-bit)

Previous

Using iterative structure of Merkle-Damgård

- Leurent [FSE08] 48-step

2^{100.5}

New (SAC08)

48-step (full)

2107

Attack of single compression function

MD5 (64-step, 128-bit)

Previous

- Aumasson, Meier, Mendel [SAC08] 47-step 2¹⁰²

New (SAC08)

63-step 2¹²¹
64-step(full) 2¹²⁷

MD5 (64-step, 128-bit)

Previous

MD5 (64-step, 128-bit)

Previous

HAVAL-3 (96-step, 256-bit)

Previous

- Aumasson, Meier, Mendel [SAC08] 96-step 2²³⁰ (full)

New

To appear in Asiacrypt 2008

96-step 2²²⁵ (full)

HAVAL-3 (96-step, 256-bit)

Previous

Best attack on HAVAL-3!!

- Aumasson, Meier, Mendel [SAC08] 96-step

96-step **2**²³⁰ (full)

New

To appear in Asiacrypt 2008

96-step 2²²⁵ (full)

HAVAL-4 (128-step, 256-bit)

Previous

none

New

To appear in Asiacrypt 2008

2241

128-step (full)

HAVAL-4 (128-step, 256-bit)

Previous

Surprisingly, 128-steps can be inverted !!

none

New

To appear in Asiacrypt 2008

128-step 2² (full)

HAVAL-5 (160-step, 256-bit)

Previous

none

New

To appear in Asiacrypt 2008

151-step 2²⁴¹
160-step(full) 2²⁵⁵

HAVAL-5 (160-step, 256-bit)

Previous

none

Even 151-steps can be inverted !!

New

To appear in Asiacrypt 2008

2241 151-step 160-step(full)

9255

SHA-0 (80-step, 160-bit)

Previous

- Cannière, Rechberger [Crypto08]

49-step

2159

New

36-step

2153

SHA-1 (80-step, 160-bit)

Previous

- Cannière, Rechberger [Crypto08]

44-step

2157

New

34-step

2153.5

SHA-2 (64-step, 256-bit)

Previous

none

* Best collision attack: 24-step

New

36-step

2²⁴⁹

SHA-2 (64-step, 256-bit)

Previous

none

Preimage attack works more steps than collision attack !!

* Best collision attack: 24-step

New

2²⁴⁹

HAS-160 (80-step, 160-bit)

Previous

none

* Collision attack until 59-step

New

52-step

2¹⁵³

RIPEMD (48-step, 128-bit, 2-branch)

Previous

none

New

33-step

2¹²⁵

RIPEMD (48-step, 128-bit, 2-branch)

Previous

none

Also work for 2-branch hash !!

New

33-step

2¹²⁵

Summary of Our Results

Target	(Step, Output bit)	Previous	New	Comp.
MD4	(48, 128)	48 (Full)	48 (Full)	2 ¹⁰⁷
MD5	(64, 128)	47	64 (Full)	2 ¹²⁷
HAVAL-3	(96, 256)	96 (Full)	96 (Full)	2 ²²⁵
HAVAL-4	(128, 256)	_	128 (Full)	2 ²⁴¹
HAVAL-5	(160, 256)	_	160 (Full)	2 ²⁵⁵
SHA-0	(80, 160)	49	36 (45%)	2 ¹⁵³
SHA-1	(80, 160)	44	34 (43%)	2 ^{153.5}
SHA-256	(64, 256)	_	36 (56%)	2 ²⁴⁹
HAS-160	(80, 160)	_	52 (65%)	2 ¹⁵³
RIPEMD	(48, 128)	_	33 (69%)	2 ¹²⁵

Messages from us

Messages from us

- Need to be careful for preimage attack.
- NIST requires 2^n for preimage resistance.
- Our work is still on going.

Messages from us

- Need to be careful for preimage attack.
- NIST requires 2ⁿ for preimage resistance.
- Our work is still on going.

Thanks for your attention !!